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Trichloroethylene (TCE) is both acutely toxic and carcinogenic to the mouse lung following exposure by
inhalation. In contrast, it is not carcinogenic in the rat lung and is markedly less toxic following acute
exposure. Toxicity to the mouse lung is confined almost exclusively to the nonciliated Clara cell and is
characterized by vacuolation and increases in cell replication. Chloral, a metabolite of TCE that
accumulates in Clara cells and has been shown to be the cause of the toxicity, also causes aneuploidy
in some test systems. Cytotoxicity, increased cell division, and aneuploidy are known risk factors in the
development of cancer and provide a plausible mode of action for TCE as a mouse lung carcinogen. All
acute and chronic effects of TCE on the mouse lung are believed to be a direct consequence of high
cytochrome P450 activity and impaired metabolism of chloral in Clara cells. Comparisons between
species suggest that the ability of the human lung to metabolize TCE is approximately 600-fold less
than that in the mouse. In addition, the human lung differs markedly from the mouse lung in the
number and morphology of its Clara cells. Thus, the large quantitative differences between the
metabolic capacity of the mouse lung and the human lung, together with the species differences in the
number and morphology of lung Clara cells, suggest that the risks to humans are minimal and that
other tumor sites should take precedent over the lung when assessing the potential risks to humans
exposed to TCE. Key words: carcinogenicity, lung, mode of action, species comparisons, toxicity, TCE,
trichloroethylene. - Environ Health Perspect 1 08(suppl 2):261-264 (2000).
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Exposure to trichloroethylene (TCE), a
volatile liquid, occurs mainly by inhalation, a
process in which absorption from the airways
is both rapid and extensive. Following expo-
sure, unmetabolized TCE is eliminated by
exhalation. Furthermore, significant amounts
of TCE are exhaled following dosing of labo-
ratory animals via the gastrointestinal tract or
by injection (1). Consequently, the pul-
monary airways are exposed to this chemical
irrespective of the route of administration, and
at high dose levels both toxicity and cancer
have been observed in laboratory animals. The
effects are species specific; the mouse is far
more sensitive to the acute toxicity of TCE
than the rat and is also the only species in
which an increased incidence of lung tumors
has been seen. As a result of this difference in
sensitivity between laboratory animals, a num-
ber of investigators have sought to explain the
mechanistic basis of the both toxicity and car-
cinogenicity in mice and the relevance of these
data to humans exposed to this chemical. In
this article the effects ofTCE on the lung are
reviewed together with proposed modes of
action for both acute toxicity and cancer.

Lung Cancer in Animals
Increases in pulmonary adenomas and adeno-
carcinomas have been observed in two studies
in which mice were exposed to TCE by
inhalation. Fukuda et al. (2) reported an
increase in both pulmonary adenomas and
adenocarcinomas following exposure of
female CD-1 mice (males were not tested) to
150 and 450 ppm TCE (6 hr/day,

5 days/week for 104 weeks) and, in a shorter
study, Maltoni et al. (3,4) reported an
increase in pulmonary adenomas in male
Swiss and female B6C3F1 mice exposed to
600 ppm, 7 hr/day, 7 days/week for 78
weeks. In contrast to the inhalation studies,
lung tumor incidences were not increased in
B6C3F1 or Ha:ICR mice given large doses
(up to 2,339 mg/kg) of TCE by gavage in
corn oil, 5 days/week for up to 104 weeks
(5-8). Lung tumors were not increased in
Sprague-Dawley rats of either sex exposed to
450 or 600 ppm by inhalation (2-4) nor
were they increased in six different strains of
rats administered TCE by gavage at dose lev-
els up to 1,098 mg/kg (5-7,9). In summary,
lung tumors have been seen in mice following
inhalation exposure but not after gavage dos-
ing. They have not been seen in rats exposed
by either route.

Toxicity to the Lung
A number of studies (10-20) have shown
that TCE is toxic to the bronchiolar epithe-
lium of mice and rats following acute expo-
sure either by inhalation or by intraperitoneal
(i.p.) injection. As in the cancer bioassays, a
marked difference in sensitivity between mice
and rats was noted. In mice, pulmonary toxi-
city was seen following exposures as low as 20
ppm (18), whereas in rats, toxicity was not
seen at dose levels below 1,000 ppm (14,18).
The lack of toxicity or carcinogenicity in the
lungs of mice after oral dosing is presumably
due to extensive hepatic metabolism reducing
the amount of TCE reaching the lungs.

There are no reports of adverse effects on the
human lung.

The primary effects ofTCE on the mouse
lung in all studies have been morphological
and biochemical changes in the nonciliated
Clara cells. Milder responses, including
reduced lamellar bodies and distortion of
microvilli, have been reported in alveolar type
II cells following administration of very high
dose levels, 2,500 mg/kg by i.p. injection (13)
or 9,000 ppm by inhalation (10). The mor-
phological changes in the Clara cells were
characterized by dilation of the endoplasmic
reticulum cisternae, which ultimately resulted
in large hydropic vacuoles formed by coales-
cence of smaller vacuoles. In some instances
the hydropic vacuoles occupied large areas of
the cell. A dose-dependent increase was seen
both in the extent of the damage to individual
cells and in the spread of damage throughout
the airways. The toxicity, which was seen
within 24 hr of a single 30-min exposure, had
significantly recovered by 48 hr and was fully
resolved within 5 days (17). Clara cell damage
was also seen after the first exposure of each
week, using a protocol in which CD-1 mice
were exposed to 450 ppm 6 hr/day, 5
days/week for 2 weeks. The lungs were mor-
phologically normal at the end of each week
after five consecutive daily exposures (18).

The only other toxicological responses
noted in the lung after exposure to TCE were
fibrosis in the mouse (21) and a decrease in
surfactant phospholipid following exposure of
rats and mice to very high dose levels ofTCE.
In mice, the decreases were seen following i.p.
injection of 3,000 mg/kg (15) and, in rats, fol-
lowing exposure to 9,000 ppm by inhalation
(10,11). Similar responses were seen in the
lungs of fetal and neonatal mice following an
i.p. dose of 3,000 mg/kg on day 17 of preg-
nancy (19). In vitro, TCE has been reported to
inhibit 5-hydroxytryptamine uptake in the
isolated perfused rat lung (22,23).

TCE-induced damage to mouse lung
Clara cells was accompanied by a reduction in
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the metabolic capacity of the lung. Forkert
et al. (13) found a reduction in both
cytochromes P450 (to 10-20% of control)
and aromatic hydrocarbon hydroxylase activi-
ties (to 40-50% of control) in the lungs of
exposed mice. Similarly, Lewis et al. (12)
found NADPH-cytochrome c reductase
activity to be reduced to 67% of control fol-
lowing exposure of mice to 10,000 ppm for
4 hr and Odum et al. (18) also found a dose-
dependent reduction in a number of
cytochrome P450 activities in mice exposed
to 450 ppm TCE daily for 5 days. Loss of
cytochrome P450 activity and the morpho-
logical recovery of the Clara cells with
repeated daily exposure to TCE suggest that
loss of metabolic capacity in these cells is an
adaptive response.

Mechanisms of Toxicity
The molecular basis of the Clara cell lesion
seen in mice has been investigated by Odum
et al. (18). Clara cells isolated from the
mouse lung were shown to efficiently metab-
olize TCE to chloral and trichloroacetic acid,
chloral being the major metabolite in these
cells. Trichloroethanol glucuronide, which is
the major metabolite ofTCE in mice in vivo
and in mouse hepatocytes in vitro, was not
formed in Clara cells due to a lack of the glu-
curonosyltransferase enzyme catalyzing the
reaction between trichloroethanol and glu-
curonic acid (Figure 1). Alcohol dehydro-
genase, the enyme responsible for the
metabolism of chloral to trichloroethanol, is
also known to have low activity in the lung
compared to the liver (24). When chloral,
trichloroethanol, and trichloroacetic acid
were administered separately to female CD-1
mice, chloral caused a lesion in the Clara cells
that was identical to that seen with TCE. The
other metabolites were inactive. The authors
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proposed that the failure of Clara cells to
conjugate trichloroethanol led to an accumu-
lation of chloral and the observed toxicity.

The chloral-induced cytotoxicity in the
Clara cell from mouse lung also results in an
increase in cell division in the bronchiolar
epithelium. Villaschi et al. (17) found a
13.5% increase 48 hr after exposures to
500-7,000 ppm TCE for 30 min, and Green
et al. (20) found up to 10-fold increases after
5 and 10 daily exposures to 450 ppm TCE.
Increased cell division was not seen in rats
following Clara cell damage induced by expo-
sure to 9,000 ppm TCE for 30 min (10).

The Clara Cell and the
Development of Lung Tumors
A significant number of acute studies
(10-20) have shown that TCE very selec-
tively targets the mouse lung Clara cell. The
question therefore arises as to the role of this
cell in the subsequent development of the
TCE-induced mouse lung tumors.

At the present time there is no direct
evidence that the mouse lung tumors are
derived from Clara cells. However, the com-
plete lack of acute morphological response or
changes in cell division rates in other cell
types such as alveolar type II cells suggests
that the Clara cell plays a key role in the
development of the lung tumors in mice
exposed to TCE. Similarly, the differences in
metabolic capacity of Clara cells in mice and
rats are consistent with the species differences
in toxicity and carcinogenicity. No such
argument can be made for other cell types.

Clara cells have been identified as the cell
of origin of some chemically induced mouse
lung tumors (24-31); equally a large number
of mouse lung tumors express alveolar type II
surfactant apoprotein, suggesting that type II
cells are the origin of many chemically
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Figure 1. The comparative metabolism of TCE in mouse hepatocytes and lung Clara cells [based on the work of Odum
et al. (18)] % refers to metabolism of TCE by each pathway in control mouse hepatocytes.

induced mouse lung tumors (32). Whether
surface antigens are a reliable marker for the
identification of the cell of origin of tumors
that consist of dedifferentiated cells remains
uncertain. Furthermore, Clara cells exposed
to nitrosamines have been reported to
develop the same surfactant-secreting
organelles found in untreated alveolar type II
cells (33). In the case ofTCE, evidence from
antigenic staining or more detailed morpho-
logical characterization of the tumors is lack-
ing. A third option is also possible or even
likely: mouse lung tumors develop from
pluripotent stem cells that are influenced by
the changes in Clara cells. In the lung, basal
cells are generally considered to be the pri-
mary stem cell for the repair and regenera-
tion of new airway epithelium, although
there is now evidence that the Clara cells also
serve as progenitor cells for the lower airway
epithelium (34).

Possible Modes of Action
of TCE as a Mouse Lung
Carcinogen
Cytotoxicity and increased cell division form
the basis of a plausible mode of action for
TCE-induced mouse lung tumors. Both are
known risk factors for carcinogenesis, particu-
larly in organs such as the mouse lung that
have significant background tumor inci-
dences. In addition, chloral also appears to
have some genotoxic potential. Tests for
mutagenicity have given conflicting results
(35-37), but those for aneuploidy are more
consistently positive (36). However, at the
present time it is not known whether aneu-
ploidy occurs in the mouse lung. Studies in
specific cell populations such as Clara cells,
which account for only a small percentage of
total cell types in the lung, are technically dif-
ficult and have not been conducted for either
TCE or chloral. In the whole lung, two
studies failed to find evidence of DNA
binding in mice exposed to TCE (16,38).

The observation of Clara cell toxicity,
increased cell replication, and the develop-
ment of lung tumors in the mouse are by no
means unique to TCE. Acrylonitrile, bromo-
benzene, carbon tetrachloride, 1,1 -dichloro-
ethylene, dichloromethane, 4-ipomeanol,
naphthalene, 1-nitronaphthalene, 0,0S-
trimethylphosphorothioate, styrene, and a
number of other chemicals selectively target
the Clara cells of the pulmonary airways; a
number of these chemicals cause an increase
in pulmonary tumors (39-48). It seems
improbable therefore that the observed acute
effects in Clara cells are unrelated to the
subsequent development of these tumors.

In conclusion, a number of known risk
factors for the development of tumors-
cytotoxicity, increased cell replication, and
possibly aneuploidy correlate well with
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the observed species-specific pulmonary
carcinogenicity of both TCE and a number
of other chemicals. Furthermore, the tumors
are not seen in those species or by those
routes of administration where toxicity does
not occur. Since all of these responses are a
consequence of high localized (Clara cell)
concentrations of chloral, the species-depen-
dent pulmonary metabolism of TCE to
chloral would appear to the most appropri-
ate dosimeter for assessing human risk.

Species Differences in the
Pulmonary Metabolism of TCE
The acute responses believed to be causally
related to the development of the lung
tumors in mice exposed to TCE have been
attributed to the high metabolic capacity of
the mouse lung Clara cells. Comparisons of
the metabolic capacity of mouse, rat, and
human lung tissue found that mouse lung
microsomes metabolized TCE to chloral at a
rate 23-fold higher than that in rat lung
microsomes. A metabolic rate could not be
detected in human lung (20). Using an anti-
body to cytochrome P4501IE1 (CYP2E1),
the enzyme responsible for the metabolism
of TCE to chloral (20,49), the highest con-
centrations of enzyme were found in Clara
cells of the mouse lung. Significantly lower
amounts were found in the Clara cells of rat
lung. This enzyme could not be detected in
human lung in any cell type, either in
human lung tissue sections or by Western
blotting (20). Other studies have reported
the presence of trace amounts of CYP2E1 in
human lung, usually only detectable by
reverse transcriptase-polymerase chain reac-
tion (50-52). In total, the cytochrome P450
content of human lung is reported to be
only 3.7% (27-fold lower) that of rat lung
(53), which is consistent with the lack of a
measurable metabolic rate for TCE in the
studies of Green et al. (20). Overall, the
data available suggest a 600-fold difference
in the capacity of mouse and human lung to
metabolize TCE. The marked difference in
metabolic capacity between mouse lung
Clara cells and those of rats or humans is
not unique to CYP2E1-catalyzed reactions.
Most Clara cell toxicants are activated by
cytochromes P450 and, for example,
CYP2F2, the isoform primarily responsible
for the metabolism of naphthalene, also
shows a quantitative distribution pattern
between species which is very similar to that
of CYP2E1 (52,54). Inhibition of
cytochromes P450 has also been shown to
prevent the development of this type of
lesion (48). Ultimately, a gene knockout
experiment could potentially prove the role
of CYP2E1 in the development of pul-
monary toxicity and cancer in mice exposed
to TCE.

Another factor should also be considered
when comparing species and evaluating
human risks in this area. Clara cells differ sig-
nificantly between rodents and between
rodents and humans both in number and
structure. In mice they are numerous and are
spread throughout the airways, whereas in
rats they are significantly fewer in number,
particularly in the terminal bronchiolar
region. In human lung, Clara cells are rare, as
they are found in small numbers in the distal
bronchioles. They also differ morpho-
logically: the mouse lung Clara cell is packed
with endoplasmic reticulum, and the human
Clara cell apparently is largely devoid of these
membranes (34,55-58). This difference in
morphology is consistent with the observed
differences in cytochrome P450 activity-the
endoplasmic reticulum is the membrane in
which the cytochromes P450 enzymes are
heavily localized. This membrane is also the
origin of the lesion in the mouse.

Relevance of Mouse Lung
Tumors for Assessing
Human Risks
Trichloroethylene induces a range of
responses in the mouse lung that are known
risk factors for the development of cancer.
The effects are not seen in mice following
oral dosing nor are they seen in rats by any
route of administration. Chloral, a metabolite
ofTCE that is produced in large quantities in
the mouse lung Clara cell has been shown to
be responsible for the observed effects (18).

The unique sensitivity of the mouse lung
to both the acute and chronic effects of TCE
is a direct consequence of high cytochrome
P450 activity and impaired metabolism of
chloral. The ability of the human lung to
metabolize TCE is considerably less than that
of the mouse lung, as much as 600-fold,
based on the available data. In addition, the
human lung differs markedly from the mouse
lung in the number and morphology of its
Clara cells. Thus, the large quantitative differ-
ences between the metabolic capacity of the
mouse lung and the human lung, together
with the species differences in the number
and morphology of lung Clara cells, suggest
that the risks to humans are minimal and that
other tumor sites should take precedent over
the lung when assessing the potential risks to
humans exposed to TCE.
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